$\qquad$
Signature: $\qquad$

## Student ID:

## Math 475 Exam 3, Fall 2007

Instructions. You must show work in order to receive full credit. Partial credit is possible for work which makes positive progress toward the solution.
Conditions. No calculators, notes, books, or scratch paper. By writing your name on the exam you certify that all work is your own, under penalty of all remedies outlined in the student handbook. Please do not talk until after leaving the room.

Time limit: 1 hour 15 minutes (strict).
NOTE: The topics may not be in order either of increasing difficulty or of the order they were covered in the course. Answers (sums/products/quotients of fractions or binomial coefficients) do not need to be fully simplified, nor do you need to find numerical approximations for your answers.

| Distribution | Probability function | Mean | Variance | MGF |
| :---: | :---: | :---: | :---: | :---: |
| Uniform |  |  |  |  |
| Normal | $f(y)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[\frac{-(y-\mu)^{2}}{2 \sigma^{2}}\right]$ | $\mu$ | $\sigma^{2}$ | $\exp \left(\mu t+\frac{t^{2} \sigma^{2}}{2}\right)$ |
| Exponential | $f(y)=\frac{1}{\beta} e^{-y / \beta}$ | $\beta$ | $\beta^{2}$ | $(1-\beta t)^{-1}$ |
| Gamma | $f(y)=\left[\frac{1}{\Gamma(\alpha) \beta^{\alpha}}\right] y^{\alpha-1} e^{-y / \beta}$ | $\alpha \beta$ | $\alpha \beta^{2}$ | $(1-\beta t)^{-\alpha}$ |
| Hypergeometric | $p(y)=\frac{\binom{r}{y}\binom{N-r}{n-y}}{\binom{N}{n}}$ | $\frac{n r}{N}$ | $n\left(\frac{r}{N}\right)\left(\frac{N-r}{N}\right)\left(\frac{N-n}{N-1}\right)$ |  |
| Binomial |  |  |  |  |
| Geometric |  | $\frac{1}{p}$ | $\frac{1-p}{p^{2}}$ | $\frac{p e^{t}}{1-(1-p) e^{t}}$ |
| Poisson | $p(y)=\frac{\lambda^{y}}{y!} e^{-\lambda}$ |  |  |  |
| Negative binomial | $p(y)=\binom{y-1}{r-1} p^{r}(1-p)^{y-r}$ | $\frac{r}{p}$ | $\frac{r(1-p)}{p^{2}}$ | $\left[\frac{p e^{t}}{1-(1-p) e^{t}}\right]^{r}$ |

$p\left(y_{1} \mid y_{2}\right)=\frac{p\left(y_{1}, y_{2}\right)}{p_{2}\left(y_{2}\right)}$
Tchebysheff: $P(|Y-\mu| \geq k \sigma) \leq \frac{1}{k^{2}}$

## SHOW WORK FOR FULL CREDIT

## NO CALCULATORS

1. Let $Y$ be a continuous random variable with density function

$$
f_{Y}(y)= \begin{cases}\frac{5}{y^{2}}, & y>5 \\ 0, & \text { otherwise }\end{cases}
$$

Define $U=3 \ln (Y-5)$.
(a) Compute the density function $f_{U}(u)$ for $U$.
(b) Give the interval of support of $U$.
2. Let $Y_{1}, Y_{2}, \ldots, Y_{16}$ be independent random variables each with $E\left(Y_{i}\right)=\mu$ and $V\left(Y_{i}\right)=\sigma^{2}$. They represent 16 repeated independent samples from the same population. The function

$$
\bar{Y}:=\frac{Y_{1}+Y_{2}+\cdots+Y_{16}}{16}
$$

is called the sample mean of the population. Use Tschebycheff's Theorem to find the probability that $\bar{Y}$ is within $\sigma / 3$ of $E(\bar{Y})$.
3. Peter, Paul, and Mary each flip identical biased coins, and they each stop flipping the first time their own coin is heads. The number of flips for Peter, Paul, and Mary, are $Y_{1}, Y_{2}$, and $Y_{3}$, respectively, each independent and having geometric distribution with mean 6. Define $U=$ $Y_{1}+Y_{2}+Y_{3}$.
(a) Compute $E(U)$ by finding the moment generating function for $U$ in terms of those of $Y_{1}, Y_{2}$, and $Y_{3}$, and then identifying the mean of the resulting distribution.
(b) Compute $E(U)$ using properties of expected value.
4. $Y_{1}$ and $Y_{2}$ are discrete random variables whose joint distribution $p\left(y_{1}, y_{2}\right)$ is given in the table.
(a) Determine the marginal probability functions $p_{1}\left(y_{1}\right)$ and $p_{2}\left(y_{2}\right)$.
(b) Compute $P\left(Y_{1}=3 \mid Y_{2}=1\right)$.
(c) Are $Y_{1}$ and $Y_{2}$ independent? If yes, explain why. If not, re-define $p\left(y_{1}, y_{2}\right)$ so that $Y_{1}$ and $Y_{2}$ are independent but have the same marginal probability functions as in (a).

|  |  |  | $Y_{1}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :--- | :---: | :---: |
| $p\left(y_{1}, y_{2}\right)$ |  | 1 | 2 | 3 |  |  |  |
| $Y_{2}$ | 1 | .12 | .12 | .06 |  |  |  |
|  | 2 | .28 | .18 | .24 |  |  |  |
|  |  |  |  |  |  |  |  |

5. On a typical day, a store sells a fraction $Y_{1}$ of its stock of milk and a fraction $Y_{2}$ of its stock of flour. The store's revenue from these sales is $R=400 Y_{1}+100 Y_{2}$. The joint density function for $Y_{1}$ and $Y_{2}$ is

$$
f\left(y_{1}, y_{2}\right)= \begin{cases}y_{1}+y_{2}, & 0 \leq y_{1} \leq 1, \quad 0 \leq y_{2} \leq 1 \\ 0, & \text { otherwise } .\end{cases}
$$

(a) Compute $E(R)$.
(b) Are $Y_{1}$ and $Y_{2}$ independent? Briefly explain why or why not.
6. Assume $Y$ is a continuous random variable with joint density function

$$
f_{Y}(y)= \begin{cases}\frac{1}{2} \cos (y), & -\pi / 2 \leq y \leq \pi / 2 \\ 0, & \text { otherwise }\end{cases}
$$

Let $U=Y^{2}$. (Not 1-1 on the support of $Y$.)
(a) Compute the density $f_{U}(u)$ of $U$.
(b) Give the interval on which $U$ is supported.

7. (16pts) Let $Y_{1}$ and $Y_{2}$ be continuous random variables with joint density

$$
f\left(y_{1}, y_{2}\right)= \begin{cases}\frac{1}{2}, & 0 \leq y_{2} \leq 4, \quad 0 \leq y_{1} \leq 1, \quad 4 y_{1} \leq y_{2} \\ 0, & \text { elsewhere }\end{cases}
$$

(a) Sketch the region of support of $f\left(y_{1}, y_{2}\right)$ (where $\left.f\left(y_{1}, y_{2}\right)>0\right)$.
(b) Compute the marginal probability densities $f_{1}\left(y_{1}\right)$ and $f_{2}\left(y_{2}\right)$.
(c) Compute the conditional probability density of $Y_{1}$ given that $Y_{2}=1$.
(d) Compute $\mathrm{P}\left(Y_{1} \leq 1 / 2 \mid Y_{2} \leq 3\right)$.
(e) Are $Y_{1}$ and $Y_{2}$ independent? Briefly explain why or why not.
8. Assume that $X$ and $U$ are random variables with

$$
\begin{array}{cc}
E(X)=-2 & V(X)=3 \\
E(U)=1 & V(U)=5 \\
E(X Y)=1 &
\end{array}
$$

(a) Compute $E(4 X-2 U)$.
(b) Compute $V(4 X-2 U)$.
(c) Are $X$ and $U$ independent? Briefly explain why or why not.

